

ANALYSIS OF PSP-LIKE PROCESSES FOR SOFTWARE

ENGINEERING

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Paul Jefferson Conrad

June 2006

ANALYSIS OF PSP-LIKE PROCESSES FOR SOFTWARE

ENGINEERING

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Paul Jefferson Conrad

June 2006

Approved by:

Dr. Richard. Botting, Chair, Date
Computer Science

Dr. Ernesto Gomez

Dr. Keith Schubert

 2006 Paul Jefferson Conrad

iii

ABSTRACT

The PSP, Personal Software Process, is introduced to

Computer Science graduate students in Software Engineering

(CSCI655). The purpose of introducing PSP to Computer

Science students is to allow students to enhance their

coding skills and documentation. The PSP requires the

software developer to record information about the source

code. The gathered information is analyzed through

various statistical techniques to help improve the

development skills of the software developer. The

analysis is used as a tool to estimate future software

projects and to help make software development better.

PSP is the leading approach for software developers

to improve their own software development skills.

However, the PSP data collection process is a time

consuming task and error prone. This thesis will try to

solve this problem with PSP. The purpose of this thesis

is to provide the California State University, San

Bernardino Department of Computer Science with an analysis

and recommended solution to improving the software

development process of graduating Computer Science

students.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Richard Botting for

devoting his time being my advisor and wonderful mentor

over many years. I would also like to thank Drs. Ernesto

Gomez and Keith Schubert for taking the time out of their

already busy schedules to serve on my committee. I want

to thank my wife, Colleen, and daughters Abigail and

Marion, for their support, patience, and encouragement

while I was preparing myself academically to produce this

thesis. I want to also thank my mother, father, and

brothers in their support.

I want to thank Dr. Arturo Concepcion for putting

together a Computer Science department that enabled me to

grow into the computer scientist that I am. I want to

also thank the numerous professors who taught me various

topics in Computer Science, for their time and sharing

their knowledge inside and outside the classroom. I also

want to thank Dr. Josephine Mendoza for her guidance

through the Computer Science Graduate Program. I would

also like to thank Amy Niessen and Monica Gonzales for all

of their assistance while I was a graduate student.

DEDICATION

To Colleen, Abigail, and Marion

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS iv

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER ONE: BACKGROUND

1.1 Introduction 1

1.2 Purpose of the Study 1

1.3 What Problem is Faced 2

1.4 Significance for Study 11

1.5 Assumptions 11

1.6 Limitations 11

1.7 Definition of Terms 12

1.8 Thesis Organization 14

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction 16

2.2 Personal Software Process 16

2.3 Team Software Process 22

2.4 Software Engineering Teaching Tools 32

2.5 Personal Process Improvement Strategies . . 34

2.6 Data Quality Issues 36

2.7 Software Process Improvement Measurement . . 44

2.8 Software Process Improvement in Practice . . 45

2.9 Extreme Programming 51

2.10 Summary 56

vi

CHAPTER THREE: METHODOLOGY

3.1 Introduction 57

3.2 Data Collection 57

3.3 Recording the Results 58

3.4 Interpreting the Results 59

3.5 Schedule 59

3.6 Summary 60

CHAPTER FOUR: RESULTS

4.1 Introduction 62

4.2 Computer Science Faculty Interviews 63

4.3 Interviewed Computer Science Faculty 64

4.4 Software Process for Students 65

4.5 Faculty Thoughts 67

4.6 Student Processes 68

4.7 Summary 69

CHAPTER FIVE: ALTERNATE SOLUTIONS

5.1 Introduction 70

5.2 Solution 0: Do Nothing 70

5.3 Solution 1: Explore Other Methods 71

5.4 Solution 2: Integrate Automation Tools . . 72

5.5 Why Solution 2 is Preferred 73

5.6 Summary 73

CHAPTER SIX: CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion 74

6.2 Future Research and Ideas 74

vii

REFERENCES . 77

viii

LIST OF TABLES

Table 1. Enrollment Figures for Past 6 Years 7

Table 2. Terms 12

Table 3. Data Quality Errors Encountered with PSP. . 39

Table 4. Errors Ordered by Severity 42

Table 5. Practices of Extreme Programming 52

Table 6. Interview Questions for Faculty 63

ix

LIST OF FIGURES

Figure 1. Computer Science Core Programming 6

Figure 2. Student Quarterly Enrollments 8

Figure 3. Computer Science I and Computer Science II
Enrollment Comparisons 9

Figure 4. Computer Science II and Data Structures

Enrollment Comparisons 10

Figure 5. The PSP and CMM 18

Figure 6. The Stages of PSP 19

Figure 7. Student Responses 33

1

 CHAPTER ONE:

BACKGROUND

1.1 Introduction

The scope of this thesis is to provide an analysis of

the Personal Software Process (PSP)[6] and other PSP-like

methodologies for the Department of Computer Science to

get instructional tools to assist graduating high quality

software developers. This thesis will investigate the PSP

and other similar process improvement models used by

software engineers and Computer Science students. The PSP

is one of the leading detailed process models for

measuring and improving the software development process.

Other software process improvement models will be

reviewed, as a part of the literature survey in this

thesis and the results will be reported.

1.2 Purpose of the Study

The purpose of the study is to provide the Computer

Science department with an analysis and recommended

solution to improving the software development process of

graduating Computer Science students. In this thesis,

there are five deliverables to be produced. The first is

the review of PSP related literature and other software

process improvement related literature, and summarize the

2

readings. Secondly, interview the Computer Science

faculty on PSP, software process, and summarize findings

from these interviews. The third deliverable is to

analyze the current student software development process

that is being used in the Computer Science department.

The fourth deliverable is to derive solutions for the

Computer Science department to better educate Computer

Science students and recommend a solution.

1.3 What Problem is Faced

With the computer industry becoming increasingly more

competitive, it is important to properly educate Computer

Science students in the preparation for such a competitive

industry. A challenge for any Computer Science program is

to help train students to become a high quality engineer.

This thesis will be looking at problems with software

process improvement methodologies and the solutions to

these problems. The PSP is one of the leading approaches

for software developers and Computer Science students to

improve their software development skills. This thesis

shows that the Personal Software Process (PSP) data

collection process is a time consuming task and error

prone. This thesis will try to solve this problem with a

PSP-like approach.

3

The Computer Science department offers six core

programming courses. These courses are Computer Science I

(CSCI201), Computer Science II (CSCI202), Data Structures

(CSCI330), Software Engineering (CSCI455), Foundations of

Software Systems (CSCI599), and Software Engineering

Concepts (CSCI655). The first four core programming

courses are taught at the undergraduate level, and the

remaining two core programming courses are taught at the

graduate level.

In Computer Science I (CSCI201), the course covers

concepts of computer software design, implementation,

methods and environments using a current high-level

language. The course also surveys computers, applications

and other areas of Computer Science. In Computer Science

II (CSCI202), the students perform analysis of problems

and the formulation, documentation and implementation of

their solutions. The students are also given the

introduction to data structures with abstract data types.

 Lastly, students are introduced to software engineering

principles for both individual and group projects. When

the students take Data Structures (CSCI330), they are

formally introduced to abstract data structures such as

lists, stacks, queues and trees. Students are introduced

to storage allocation and associated application

4

algorithms for the abstract data structures introduced in

the course. In Software Engineering (CSCI455), Computer

Science students are formally introduced to advanced

techniques and technology used to produce large software

systems. The course laboratory works with a software

development environment that mimics a large software team

working on a large-scale software development project.

Graduate students who have not been introduced to

CSCI201, CSCI202, and CSCI330 at the undergraduate level

are required to take these courses before taking

Foundations of Software Systems (CSCI599). In this course,

the graduate student is introduced to software development

process that includes software life cycles, software

techniques and technologies used to produce large software

systems. This course is a refresher or catch-up course

that covers the same topic areas as CSCI455 and Operating

Systems (CSCI460) courses. The graduate students taking

the Software Engineering Concepts (CSCI655) are formally

introduced to the analysis of software requirements

definitions, software systems design, implementation

issues, verification and validation, and software

maintenance techniques. The graduate student is also

taught rapid prototyping procedures, operational and

transformational paradigms of software development. The

5

graduate student is introduced to software engineering

models and CASE tools that include reverse engineering and

module reusability concepts. The graduate student is also

taught applications in object-oriented programming

languages. Figure 1 is a flow diagram of these core

programming courses offered by the Computer Science

department.

6

Figure 1. Computer Science Core Programming.

Table 1 contains the student enrollment for the CSCI201,

CSCI202, and CSCI330 courses over the past six years.

These enrollment figures are used in the scatter plots in

figures three and four.

7

Table 1. Enrollment Figures for Past 6 Years.

Filled Seats in Courses

Term CSCI201 CSCI202 CSCI330

Fall 00 58 19 38

Winter 01 84 41 0

Spring 01 50 58 49

Fall 01 110 0 37

Winter 02 93 56 16

Spring 02 59 32 44

Fall 02 80 29 28

Winter 03 60 39 27

Spring 03 61 32 22

Fall 03 65 33 33

Winter 04 57 24 22

Spring 04 29 18 17

Fall 04 59 19 19

Winter 05 51 16 24

Spring 05 44 27 19

Fall 05 71 24 12

Winter 06 45 35 28

Spring 06 50 29 23

Figure 2 contains the student enrollment for the

CSCI201, CSCI202, and CSCI330 courses over a period of the

8

past six years. The enrollment trends for these three

courses have been a steady slow increase over the more

recent terms.

Student Enrollment

0

20

40

60

80

100

120

F
al

l 0
0

S
pr

in
g

01

W
in

te
r

02

F
al

l 0
2

S
pr

in
g

03

W
in

te
r

04

F
al

l 0
4

S
pr

in
g

05

W
in

te
r

06

Term

S
tu

d
en

ts
 E

n
ro

lle
d

CSCI201

CSCI202

CSCI330

Figure 2. Student Quarterly Enrollments.

The scatter plot in Figure 3 shows the comparison between

the CSCI201 and the CSCI202 enrollments for the term

following the CSCI201 enrollment. The trend line shows

that about half of the students who took CSCI201 continue

with CSCI202 in the following term. The other half of the

9

students who do not take CSCI202 in the following term are

most likely other College of Natural Sciences (CNS) majors

such as Mathematics or Physics. The trend line also shows

that about 3 students on average drop the CSCI202 course.

CSCI 201-202 Enrollment Comparison

y = 0.5208x - 3.3701

0

5

10

15

20

25

30

35

40

45

50

20 30 40 50 60 70 80 90 100 110

CSCI 201

C
S

C
I 2

02

Figure 3. Computer Science I and Computer Science II
Enrollment Comparisons.

The CSCI202/CSCI330 comparison scatter plot in Figure 4

does not show nearly as clear picture of the student

behavior after taking the CSCI202 course. It could be

10

that students turn their focus towards the hardware core

courses such as Digital Logic (CSCI310) and Machine

Organization (CSCI313). The students could also be taking

Programming Languages (CSCI320) or General Education

courses if they are an undergraduate.

CSCI 202-330 Enrollment Comparison

y = 0.061x + 22.911

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

CSCI 202

C
S

C
I 3

30

Figure 4. Computer Science II and Data Structures
Enrollment Comparisons.

11

1.4 Significance for Study

This study should help the department significantly

improve the number of high quality Computer Science

graduates. With the generation of high quality Computer

Science graduates, the industry is thus given a pool of

strong talent, and the university can increase the

likelihood of student body growth.

1.5 Assumptions

In this thesis, the derived solutions have to work

within the existing course layout. This thesis is going

to work at finding better tools to help aid the students

taking the courses. Redesigning the existing Computer

Science curriculum is not an option since it would be

costly in terms of time resources.

1.6 Limitations

During this thesis, only the Computer Science faculty

was interviewed. Student interviewing was not necessary

since expert knowledge of software development practices

was required to derive solutions. During the faculty

interviews, general student opinions in the form of

faculty feedback were noted and taken into consideration

for the solutions. There was not any user testing done

12

since the PSP is introduced in the Software Engineering

Concepts (CSCI655) course.

1.7 Definition of Terms

Throughout this thesis, there are several important

terms that require attention and the definitions that

should be noted.

Table 2. Terms.

Term Definition
Actual work The actual developer efforts devoted to a software

development project (PSP).

Analyzed work The calculated developer efforts devoted to a
software development project (PSP)

Automated PSP In which some or all of the derived measures are
calculated and placed into the forms automatically.

C++ A hybrid, high-level programming language with
object oriented features.

Capability maturity model A methodology used to develop and refine
software development process in an organization.

CASE Computer Aided Software Engineering
Core programming course Undergraduate courses, covering computer

programming and data structures, which are
required for fulfillment of a degree in Computer
Science at CSUSB.

Cyclic development Software development where there are
refinements done in a cyclic manner (TSP).

Eclipse An open source community with projects focused
on providing an extensible development platform
and application frameworks for building software.

Framework A structure for supporting or enclosing something
else.

Insights about work Feedback for improving future software
development activities (PSP).

13

Iterative A process that goes through a series of
approximations towards the optimal or correct
solution. Each iteration repeats a similar series of
activities. In software development, an iteration
improves an existing piece of the software by
adding new functionality. The iteration starts with
planning, continues through analysis and design to
testing.

Manual PSP In which some or all of the derived measures are
calculated and placed into the forms manually by
hand.

Outcomes Assessment An educational term naming a quality control
process for courses and educational programs. At
CSUSB, all degree programs are encouraged to
have “Outcomes Assessment.” The Computer
Science department maintains a set of rubrics that
define what students should have learned in the
core courses and the actual outcomes are scored
versus the rubrics each quarter.

Personal Software Process (PSP) Software process framework showing software
engineers how to manage project quality, make

14

Software subcontract management A comprehensive set of tools to help plan and
manage outsourced development projects,
including a detailed process description, templates,
checklists, and spreadsheet tools.

Team Software Process (TSP) Software process framework showing software
engineering teams how to manage product quality,
make commitments, estimate and plan, reduce
defects and effectively work in teams.

Unit test Developer testing to demonstrate that a code
module or unit meets its specified requirements.

Waterfall Software life-cycle described by W. W. Royce
where development is supposed to proceed
linearly through the phases of requirements
analysis, design, implementation, testing,
integration and maintenance.

1.8 Thesis Organization

This thesis is divided into six chapters. Chapter

One covers an introduction to the problem of the software

process improvement, the purpose of this thesis, the

significance of this thesis, encountered limitations, and

definitions of terms that are used throughout this thesis.

Chapter Two is a review of the literature covering the

defining documents of PSP and the research that has been

published about it. The pieces of literature that were

reviewed for this thesis are relevant to software process

improvement methodologies, and findings from various

studies that were conducted were found to be helpful in

15

the analysis of methodology issues and concerns. In

Chapter Two, a brief overview of the Personal Software

Process (PSP) and the Team Software Process (TSP) is

introduced. In Chapter Three, the methods of this thesis

are introduced. Chapter Four presents the results from

the thesis and looks into the results of interviewing

Computer Science faculty as part of the deliverables for

this thesis. In Chapter Five, the validation from the

thesis is covered. In Chapter Six, this thesis lays out

the roadmap for future research and development to be done

in the area of providing software process improvement

tools for Computer Science students. Finally, the

references for this thesis are presented for guidance in

future research work in this area.

16

 CHAPTER TWO:

LITERATURE REVIEW

2.1 Introduction

In order to take a closer look at what can be done

with PSP to make it a valuable tool for students majoring

in Computer Science, we have to investigate what areas of

the PSP have educational values for the students. This

chapter will describe the PSP based on the books by Watts

Humphrey [6][9]. We also investigate how to reduce data

quality errors made by students using PSP, examine ways to

make administrative work less tedious, and explore other

PSP-like methodologies that can be of high value for the

Computer Science students.

2.2 Personal Software Process

Humphrey [7] explains that the PSP was developed by

taking large-scale systems principles and applying these

principles to small software development teams or

organizations and individual software developers. PSP

introduces making plans, managing the plans, reducing

product defects, and increasing the software developer

productivity. While many software developers feel that

they already produce quality software, make accurate

plans, and have high productivity measures, PSP provides

17

the framework and methods to help the developer gather

supporting data about software quality, planning, and

productivity. The supporting data obtained through the

PSP allows the developer to build a case for management

and customers in regards to software quality and the time

estimates of the project.

Humphrey [6] lays out the details of the PSP. He

introduces methods and practices in a gradual manner by

using special training exercises. The maturity framework

in the PSP is similar to those found in CMM (Capability

Maturity Model). Figure 5, based on figure 1.2 (page 10)

in [6], shows the relation between the PSP and CMM. The

PSP does not include some aspects of CMM such as:

software subcontract management and intergroup

coordination, requirements management and software

configuration management, and software quality assurance

and training.

Software subcontract management and intergroup

coordination cannot be applied to the PSP because they

cannot be practiced at the individual level. The

requirements management and software configuration

management can be practiced at the individual level;

however, a small team environment is the best place for

these practices. When it comes to software quality

18

assurance and training, there is more of a relation to

organizational issues and approaches with these aspects of

CMM.

Figure 5. The PSP and CMM.

19

 The PSP moves upward through five process levels

starting with a baseline personal process, to the cyclic

personal process level. In figure 6, based on figure 1.3

(page 11) in [6], the different stages of the PSP are laid

out.

Figure 6. The Stages of PSP.

20

 PSP starts at the lowest tier with methods in PSP 0.

This stage is the starting point for all who learn PSP

whether or not they are experienced programmers. PSP0

establishes the baseline personal process of the

programmer. According to Humphrey [6], this stage

provides the following: a structure that is well suited

for handling small-scale tasks, a metric framework for

measuring these small tasks, and a basic foundation for

developing a process improvement approach. Two measures

are recorded in the PSP0: the time spent per phase, and

the number of defects found per phase. The phases used

are the planning, design, code, compile, test, and

postmortem. PSP0 also introduces time recording, defect

recording, and a project plan summary. With time

recording, the developer keeps track of how much time has

been spent on each phase. The defect recording provides

the developer with an approach at tracking which phase

defects have occurred and which phase, if any, that the

defect was removed from the program. The PSP0 is further

enhanced with PSP0.1, which adds coding standards, size

measurements, and process improvement proposals (PIP).

The next stage in the PSP is the PSP1 stage for

developing personal planning process. In this stage, the

same methods from PSP0 are used, but planning steps, size

21

estimation, and test reporting are added. Humphrey states

that documented plans are needed: to help give an

understanding of the relationship between the size of

programs developed by the programmer and the time it takes

to develop the program, to help put together commitments

that can be met by the programmer, to have an orderly plan

for doing the task, and to supply a framework for status

reports of the task. There is the enhancement to PSP1,

the PSP1.1, in which task planning and schedule planning

is introduced.

PSP2 is the stage following PSP1. Here, the PSP

introduces a personal quality management process to help

track defects in the programs. The key aspect to this

stage is to improve the quality of code written by the

software developer. The first step to better code is

using code and design reviews. PSP2.1 enhances PSP2 by

utilizing design templates. It should be noted that

design templates and design patterns are not the same.

Design patterns are documented approaches to how future

software is developed. In the PSP, the design template is

a form that is used by the software developer for guidance

through the current project.

The last stage of the PSP is PSP3 that concentrates

on a cyclic personal process. Humphrey makes the point

22

that this stage allows PSP to scale upward efficiently to

large programs. The main strategy in the PSP3 stage is to

break a large program down into PSP2-sized pieces [6].

PSP3 relies on high quality increments of the task at

hand.

Humphrey makes the assumption that if one collects

data from past projects and compares the data with the

current project, then one can supply good estimates of the

effort involved. It is interesting to note that the PSP3

stage has been changed in 2005 to the Team Software

Process (TSP) [9].

2.3 Team Software Process

The Team Software Process (TSP) is a defined

framework for software teams [8]. TSP is geared for large

projects that can span many years of development, and the

TSPi is a scaled down version of the TSP. The TSPi is a

design that modified TSP into an industrial process for

software engineering teams of up to 20 developers. In the

TSPi, the team starts with a small set of initial

functionalities, and then through additional development

cycles, learns to better plan and develop the product.

This cyclic development strategy is comparable to

23

processes used by successful large-scale software

development teams.

Humphrey has four basic principles in the TSPi. The

first is that students learn most effectively when defined

and repeatable steps are followed, and when rapid feedback

on their process is available. The second principle

Humphrey states that a defined team goal, an effective

working environment, and capable coaching and leadership

are the requirements for productive teamwork. Thirdly,

students gain better understanding and appreciation for

sound engineering practices when facing problems of

realistic development projects and having guidance to

effective solutions. The fourth principle is that,

through effective instruction, learning builds on the

available body of previous engineering, scientific, and

pedagogical experience.

With these four principles, the TSPi design is based

upon seven choices. The seven choices are: building a

simple framework based on PSP, product development over

several cycles, have an established standard for measures

regarding quality and performance, have precise measures

for teams and students, utilize role and team evaluations,

have a sound process discipline, and also provide guidance

for any teamwork problems.

24

Humphrey explores how and why the TSP and TSPi work

through solutions for teamwork issues. He looks into why

do projects fail, common teamwork problems, the definition

of a team, what makes an effective team, how to develop an

effective team, and how to use the TSPi to build an

effective team. Humphrey first looks at why do software

projects fail. He points out from DeMarco [DeMarco 88, pg

2] that it is not because of technical matters that

projects fail, but rather because of teamwork problems.

DeMarco says that

"The success or failure of a project is seldom due to

technical issues. You almost never find yourself

asking 'has the state of the art advanced far enough

so that this program can be written?' Of course it

has. If the project does go down the tubes, it will

be non-technical, human interaction problems that do

it in. The team will fail to bind, or the developers

will fail to gain rapport with the users, or people

will fight interminably over meaningless

methodological issues."

One key teamwork problem is handling job pressure. A tight

job schedule or deadline is a common pressure that a team

can be subjected to. Humphrey warns that effects of

excessive pressure can be destructive since it can cause

25

team members to worry and conjure problems and

difficulties that may not be an actual reality. The

worries that come from pressure can often have untold

consequences and potentially negative impact on the team.

Since pressure is a feeling that is generated

internally by the developer, the first step in handling

the job related pressure is to train developers to manage

the pressure within themselves. The TSPi shows

development teams how to manage pressure through a

strategy and planning process. Since unrealistic

schedules are a key source of software project problems,

the TSPi helps software teams manage projects efficiently.

When this happens, software teams have a better likelihood

of performing quality work.

Humphrey investigates common team problems and shows

how TSPi can address these problems. Ineffective

leadership is a problem for teams and an effective leader

is essential for a successful team. With an effective

team leadership, teams can maintain focus on their plans

and personal discipline. Sometimes one or more team

members may not work together well, or work with the team

well. This lack of cooperation and failure to compromise

is a problem that does not arise often, but when it does,

it must be handled in an effective and constructive way.

26

Humphrey states that peer pressure can remedy the problem,

but if the problem continues, then instructor or manager

interaction is needed to keep the team functioning.

Other team problems commonly found are: lack of

participation, lack of confidence or procrastination, poor

quality issues, function creep, and ineffective peer

reviews or evaluations. With the lack of participation,

27

strengths and weaknesses are pointed out, then the

opportunities to improve and motivate are possible.

Humphrey looks at what makes a team. He agrees with

the definition of a team by Dyer [Dyer, pg 286]. In the

definition, a team is basically two or more persons, who:

 work together towards a common goal, where each person is

given a specific role or task, and the goal achievement is

met by some form of a dependency amongst the members of

the team. In order for a team to be successful, the

ability to build an effective team is needed. Having team

cohesion, goals, feedback, and a common working framework

are necessary for building an effective team. Team

cohesion is the act of making the team a tight-knit unit

in which groups or members communicate freely and often.

Humphrey states that friendship is not a necessity, but

working close together with respect and mutual support is

an essential requirement for team cohesion.

Challenging goals are an important element for

building an effective team. Setting goals such as:

detailed plans, performance targets, quality objectives,

and schedule milestones, can give the team focus. When

goals are tracked and progress is visibly displayed, the

team members can see how the team is progressing towards

28

the final goal. Hopefully, the goals can serve as a

positive motivation towards the final project goal.

Having a feedback mechanism is critically important

for building an effective team. With a feedback process,

the team members can gauge their performance. They can

compare their performance to the team as a whole. At this

point, their individual contribution to the team may or

may not be apparent. Shirking team members are those team

members who do not exert an equal amount of personal

effort as the rest of the team. Feedback can help

identify those shirking team members and address any

issues that may be detrimental to the health of the

project.

A common working framework serves as a pathway to

achieving the team goals. This common working framework

is the last element in building an effective team. Team

members need to feel that the team tasks are achievable

and they must know the following: what is the task to be

do, when is the task to be done, what order of steps in

the task are needed to complete the task, and who is going

to be responsible for completing the task. By asking

these questions, the team can have an effective plan

showing where it is going towards the goal, and have an

open channel for team communication.

29

Humphrey details how to develop effective teams and

how the TSPi helps the team building process. The first

step in the effective team building process is to create a

jelled team. This jelling process is the convergence of

team members to a common knowledge of what the product

that is going to be built will do. Making plans and goals

is the starting point of this process. Once this step is

completed, the team members agree on the strategy and plan

to build the product. The TSPi helps teams jell by

providing steps for goal definitions, establishing team

member roles, setting strategic approaches for achieving

the set goals with plans, setting up a communication

framework for teams, and external communication to the

instructor or manager.

In order for all of this to happen, the TSPi is

divided into eight major process scripts. These eight

process scripts are: launch process, development

strategy, development planning, design process, test

plan, build process, system and integration testing, and

the postmortem. In the launch process, the instructor

or manager assigns and reviews team member assignment

and roles. Also done in this launch process, is the

setting of project objectives, and team and individual

goals. The last step of the launch process is to review

30

the roles and working practices to make sure they will

work to result in the finished project.

Development strategy and planning are the next two

processes that make up the TSPi. With development

strategy, the team can put together a strategy for doing

the work and perform estimation on the sizes of the

products and the required time to do the work. The

development strategy needs to be documented so the team

has a detailed roadmap showing where they need to go in

the project. Once the development strategy is put into

place, the development planning is done for the project.

 The development plans show how the project is going to

be implemented. The development plans document what the

requirements are, why the requirements are needed, and

the key requirements issues are noted and the approaches

to handling the issues are in place. All of this put

together, the teams can be guided in a direction of

doing better work.

 The fourth process of the TSPi is the design

process for the project. In the design process, the

TSPi covers the design principles, team design

practices, standards for design, design for testing,

design for usability, and design inspection and design

review practices. The design process also takes into

31

account the implementation process by starting with the

design completion constraints, the implementation

standards and strategies, and review and inspection of

the implementation process. This is important for

successful deployment of the finished project.

 Humphrey explores the next four processes of the

TSPi. These processes are: the project test plan, the

build process, and the system and integration testing,

and the postmortem. With the first three processes

coupled together, the team can track down defect prone

areas of the project. The last process, the postmortem

process, the team members can learn from the work done

in the project by reviewing team and individual work,

examine what was done in each development cycle, and

determine how the team can improve the next time.

 The TSPi was summarized in this thesis because it

is the next step above the PSP. Though students can

learn the TSP and TSPi without any formal introduction

to the PSP, the PSP is the cornerstone foundation for

the TSP. Since in the computer industry developers

often work on teams, the TSPi is a set of tools that can

be beneficial for the student. Ideally, the student

learns the PSP and advances to the TSP.

32

2.4 Software Engineering
Teaching Tools

Martin Dick [3] looked at teaching tools that help

aid software development training of Computer Science

students. A positive learning environment depends on the

development and integration of several teaching tools. No

one particular tool can be the cure-all silver bullet for

teaching, or be the only solution for Computer Science

students. Computer Science students need to be involved

in the Computer Science courses as active learners and not

just passive receivers of information. When information is

regurgitated back in the form of assignments, or

examination results, it has not been properly digested.

The students could use PSP as an integral part of

their software engineering training. The use of basic PSP

measures in the software engineering coursework should

allow the student to improve their software engineering

and process improvement skills. The greatest amount of

learning occurs when the assignment has relevance to the

course and the student.

A survey of student attitudes toward assignments at

Monash University [10] was done using a 1-5 Likert scale.

 Assignments were measured based on quantity of assigned

work (1=little, 3=modest/okay, 5=excessive/too much),

33

student interest in assignment (1=high, 3=modest/okay,

5=little/dull), and learning value of assignment (1=high

value, 3=moderate value, 5=little value). In Figure 7,

based on figures 1, 2, and 3 from [3].

50
55
60
65
70
75
80
85
90
95

100
105

1997/2 1998/1 1998/2 1998/3 1999/1

Academic Year

P
er

ce
n

t
P

o
si

ti
ve

R

es
p

o
n

se
s

Workload

Assignment Interest

Learning Value

Figure 7. Student Responses.

 Workload demonstrates the percent of students with a

response of 4 or 5, pointing out that students believed

the assignment workload to be too heavy. The response to

the initial survey was to reduce the number of stages in

work from 3 down to 2. In the area of assignment

interest, the percent response levels were 1 to 3 for

34

interest in the assignments. Student interest has been in

the area of being OK when the course was offered as a

summer semester course; there was a strong interest during

the 1998/3 term. This spike can be possibly attributed to

the composition of students, who overall exhibited a

higher level of interest and success in the course than in

other semesters. The students undertaking summer semester

were typically fast-tracking their degree and are

therefore a more highly motivated group. Learning value

gave the percentage of students who thought the

assignments provided a challenge. It seems that there was

reasonable interest since the assignments were perceived

as an important contribution to the student knowledge of

software engineering practice.

2.5 Personal Process
Improvement Strategies

O’Connor [11] explores two personal process

improvement methodologies and compares them. These two

personal process improvement methodologies are PSP and the

Process for Improving Programming Skills in Industry

(PIPSI). Teachers, Computer Science students, and

professional software engineers have found that learning

PSP is both a demanding and challenging process. In PSP,

there is significant investment in time and effort.

35

Reporting actual use of PSP in the software development

industry has been limited due to several factors. First,

many companies show reluctance to release data that may be

used by customers or competitors to identify actual costs

and defect levels. Secondly, little or no historical data

that can help quantify effects on costs and schedule.

Last of all, PSP has not been widely adopted in practice,

resulting in fewer cases from which to draw conclusive

results.

A significant benefit of PSP has been found in both

the classroom and industry settings. In the classroom

setting, Computer Science students reduce the number of

defects in their program code, while on the same token,

not impacting their productivity in a negative manner. In

the industry setting, professional developers have

improved both the accuracy in estimation and quality of

the finished product.

However, problems are reported as a high rate of

recidivism where PSP trained engineers do not maintain the

disciplines taught and revert to their pre-PSP development

processes. Other problems encountered are the duration of

training involved being unsustainable for small and

medium-sized enterprises, lack of tool support and data

36

recording via pencil-paper-spreadsheet is a tedious task

for the developer.

PIPSI aims to provide a process improvement framework

for software engineers in small or medium-sized

enterprises, and to improve software engineering skills.

There are three main deliverables with PIPSI: defining a

personal process, personal project management, and

personal quality management. O’Connor concludes that

PIPSI is good tool for improving software process

improvement since it takes out the administrative burden

that is found in the PSP.

2.6 Data Quality Issues

Empirical software process improvement requires both

gathering large amounts of data and the analysis of the

data. Substantial effort is required for the data

collection, analysis, interpretation of the information

found in the analysis, and the introduction of

organizational changes based on the found measurements.

PSP is an "alternative and complementary" approach for

which empirically guided software process is tailored to

the individual software engineer.

Errors can affect the effectiveness of PSP. Errors

can occur in data collection, and during the analysis of

37

the data. Disney and Johnson [4] devised two models of

PSP in order to guide the way for an understanding of data

quality problems that can arise in PSP. These models are

labeled "Actual Work" and "Analyzed Work." In the "Actual

Work" model, the developer collects primary measures for

time, defects injected, and the work product

characteristic, which Disney and Johnson refer to as

"Records of Work." The "Analyzed Work" is the analysis of

these collected primary measures. Disney and Johnson make

the point about "Analyzed Work" helping yield "Insights

about Work," which will guide the software developer in

future software development activities.

PSP is done in two ways, "manual PSP" and partially

or fully "automated" PSP. In the manual PSP, the software

developer is responsible for entering measurements into

forms by hand, editing an online version of the form, or

filling out a printed copy of the form via pen or pencil.

Disney and Johnson state that even spreadsheets can be

considered as manual PSP. Unless the spreadsheet

automatically inserts and maintains calculations, the

values in the appropriate cells in the spreadsheet may be

incorrect.

The partially or fully "automated" PSP is one in

which some or all of the measures are calculated and

38

placed into the location on the form for the calculated

measure. In automated PSP, the analysis tools and forms

that represent the PSP reports need to be tightly

integrated. Even though the "automated" PSP can automate

all of the analysis calculations, the collection stage is

still a manual stage.

Data quality in PSP can be affected in three basic

areas during the data collection aspect of PSP: omission

errors, addition errors, and transcription errors. The

omission error is when the developer, either by accident

or intentionally, fails to record one or more of the

primary measures of time, defect, or the work of the

product itself. Addition errors occur when the developer

places "Records of Work" with data that does not reflect

upon the actual practice. Transcription errors occur when

the developer does intend to record the "Actual Work"

done, but makes a clerical mistake during the collection

process.

PSP can encounter data quality problems in the

analysis stage of manual PSP. The three areas in which

the data quality can be compromised are: omission errors,

calculation errors, and transcription errors. Omission

errors are errors that are encountered when the developer

fails to perform a required analysis of the primary data.

39

Calculation errors occur when a developer attempts to

perform an analysis and does so incorrectly. Disney and

Johnson give an example of a developer using a regression

based estimation approach when the historical data is

uncorrelated and makes the predictions invalid.

Transcription errors are a problem for data quality when

the developer takes the results of the analysis and moves

the computed information in places on the PSP report form

where the data does not belong. Table 3, based on results

found in [4] shows the types of data quality errors, the

number of occurrences of the error, and percentage that

the error makes up as a whole.

Table 3. Data Quality Errors Encountered with PSP.

Error Type Occurrences Percentage

Calculation 705 46%

Blank Field 275 18%

Information Transfer between Projects 212 14%

Entry 142 9%

Information Transfer within Project 99 6%

Impossible Values 90 6%

Process Sequence 16 1%

Total 1539

40

 Disney and Johnson found that the most commonly

occurring error type when using the PSP were calculation

errors. These errors could very well be just arithmetic

mistakes that any normal human being produces. This error

type was applied to any data field in which the values

were used in calculations ranging from arithmetic

operations or linear regression. The second most common

error was the omission of required values. Information

transfer between projects was the third type of error.

Taking values from fields in one project and misplacing

the values into another project would destroy its value.

Disney states that it is almost impossible to determine

where this type of error comes from. Disney and Johnson

found that entry errors made up 9% of errors. These could

be errors of misplacing digits in the fields and could

also result from the software engineer or student not

understanding the purpose of the field or from using an

incorrect method when selecting the data. Information

transfer within projects was an error that made up 6% of

the PSP data quality errors. These errors are similar to

the information transfer between projects, except the

errors would occur when information was transferred from

one form to another form within the project. Impossible

41

values were another type of error that Disney and Johnson

found. This type of error occurred when two values were

mutually exclusive. Common occurrences of this error was

when there were overlapping time entries in the time logs,

defect fix times for a particular phase, or phases

occurring in a different order than stated in the defect

recording log and time recording log. The last type of

error was errors in which process sequence was not

followed. This type of error occurs in the time recording

log showing the software engineer or student moving back

and forth between PSP phases rather than sequentially

moving from one PSP phase to the next phase in an

appropriate manner for the process.

 Disney and Johnson investigated the effects of the

PSP data errors since some errors can have a minor ripple

effect on the calculations whereas other errors can have

an enormous, if not devastating, impact on the

calculations. Table 4 gives insight on the severity of

errors in regards to the ripple effect on the PSP

calculations. The error types are ranked in order from

the least severe to the most severe.

42

Table 4. Errors Ordered by Severity.

Error Type Occurrences Percent

No impact on PSP data 104 7%

Single bad value, single form 674 44%

Multiple bad values, single form 197 13%

Multiple bad values, multiple forms, single project 41 3%

Multiple bad values, multiple forms, multiple projects 523 34%

Total 1539

The errors that have no impact on the PSP data are errors

such as missing header data, incorrect dates in the time

recording log, and the filling in of fields for a more

advanced process. Errors that result in a single bad

value on a single form are the second type of error in

severity. This level of errors is used when a significant

field, which affects no other fields, was left blank or

had an incorrect value. The third level of error severity

consists of errors that result in multiple bad values on a

single form in a single project. This level indicates

that an incorrect or blank value was used to calculate

values for one or more fields that are used in the single

form. The fourth level of error severity consists of

43

errors that result in multiple bad values over multiple

forms in a single project. This level indicates that

either a blank or incorrect value was used in determining

values for one or more fields on one or more forms in the

same project. The most severe level of error resulted in

multiple bad values on multiple forms over the course of

multiple projects. Errors of this severity affected

future projects by use of incorrect or blank values that

were inherited from situations where errors resulting in

multiple bad values on multiple forms through out all of

the projects involved.

Disney and Johnson made several conclusions in the

study. First, they feel the study indicated that there is

a need to explicitly assess collection and analysis data

errors from others in the PSP community. This study

looked at two types of errors that can impact the

effectiveness of PSP and this study enables the PSP

community to devise an approach to minimize the data

quality errors. Secondly, they feel that PSP does have a

substantial educational value for software developers.

Third, an integrated tool to support PSP is not something

to be "merely helpful," but is a requirement to help the

PSP obtain high analysis-stage data quality. Lastly, the

questions raised by the study should be resolved; PSP data

44

should not be used to evaluate the effectiveness of the

PSP itself.

2.7 Software Process
Improvement Measurement

Paulish and Carleton [12] found that many software

engineering organizations strive to improve their software

development process. However, only a few know what the

best approaches at improving the development process could

be for their organization. Software process improvement

is motivated as a result of external regulations, strong

competition, and/or the call for increased profitability.

The software engineer can address the later two through

higher productivity.

The selection and successful implementation of

software improvement process is dependant on many

variables ranging from current software process maturity,

organization skill sets, business and organizational

issues such as cost, risk, and implementation time. The

prediction of success is difficult due to external

environmental variables such as staff skill sets,

acceptance for implementing new process, training, and

efficiency of the actual implementation of the software

improvement process. The investment in training and

45

effort involved in a new software improvement process is

often a considerable barrier for success.

For the case studies, two key variables were used in

the selection of sites for the study. First, the site

needed to have a large variety of application domains,

organization size, and product complexity. Secondly,

organizational dedication to software process improvement

was a must. Two types of data, primary data and

environmental data, were collected throughout the study

from the selected sites. Primary data allowed for

performance measures to be calculated determining how well

the project progressed in development. The primary data

that was collected were: defects found per phase, product

size measured in terms of function points or lines of

code, effort, schedule duration time, and schedule cycle

time. Environmental data was collected to measure the

development environment characteristics. The data

collected ranged from staff size, staff turnover rate,

software process maturity level, and staff morale.

2.8 Software Process
Improvement in Practice

Coleman [2] states that software project success is

generally determined by the project meeting the

expectation of the users, being delivered in a timely

46

manner, and adhering to the budget constraints. Some of

the large corporations make attempts to ensure success in

their software projects by following the chosen software

process improvement methods, such as Capability Maturity

Model Integrated for Software (CMMI-SW) and the

International Organisation for Standardisation (ISO) 9001.

Small to medium sized enterprises (SMEs), due to

their size, are faced with particular challenges when

developing software, and one of these challenges is

choosing an appropriate software process improvement

model. Coleman reports on which factors influence the

structure of software process in Irish SMEs and examines

why standard process models are rejected in favor of a

tailored minimum.

The Software Engineering Institute (SEI) reported

that between the end of 1997 to the end of 2002, despite

the years of marketing and promoting software process

improvement methods, the use of software process

improvement models was relatively low. Newer process

models, such as Personal Software Process (PSP) and Team

Software Process (TSP) have emerged as software process

improvement methods tailored towards SMEs. Large

companies have charged the PSP and TSP methods as overly

prescriptive and bureaucratic. On the other hand, SMEs

47

are thriving on the process being "good-enough" for their

organizational needs.

Coleman interviewed 15 companies in the study and

found a large range of SPI models being used.

Interestingly, none of the companies were using models in

a textbook manner, but instead, removed elements or added

some proprietary element to the chosen model. In the

interviewed companies, three were using Extreme

Programming (XP) as the process model. Of these three

companies, two used XP aggressively, whereas none of the

companies used XP in the scope of the twelve principles

that make up XP. Rational Unified Process (RUP) or some

approximate variation of RUP had been used in seven of the

fifteen companies. These seven companies used RUP in a

tailored manner within a proprietary model. Two of these

companies subsequently shelved RUP.

Stepanek [15] points out that there are a number of

misconceptions about Rational Unified Process. RUP is not

a process but instead is a toolkit for building processes.

All of the roles, activities, and artifacts are tools in

the toolkit. Only in rare cases every tool in the toolkit

is used. Stepanek states that circumstances of critical,

multi-year projects with hundreds of developers would make

up this rare case. Stepanek also says that RUP cannot be

48

used directly as-is out of the box, and there is a

requirement for tailoring to be done. As a note, the IEEE

process standard [13][14] requires organizations to tailor

their process.

The remaining five companies used either versions of

the waterfall method or some type of iterative development

approach as their software process model. There were

various factors involved when choosing the software

process improvement model the organization was going to

use. The primary factors were: CTO (Chief Technology

Officer)/Development Manager background,

customer/application type, situation pre-process, size of

the project or team, product/service model, and influence

of key staff members. The main perception of process is

the fear of added administrative overhead, and added work

of gathering and upkeep of information. Coleman makes

note of some quoted interviewees. SMEs face difficulty

when implementing CMMI-SW or ISO 9001 due to cost

constraints. As one company CTO stated:

“We knew we had too much [process] when there was

more administration being done than development. I

think that product development is about being

inventive and creative and new ideas coming forward

and being developed quickly into something

49

mainstream. And when you don't see that happening I

think that too much is being stifled.”

There must be caution on exactly how much process

there must be in the software development process.

Another interviewee expressed concern for the burden of

the administrative overhead by putting it, as “from a

making money perspective, you want every engineer to be

working on billable work every time.” One engineer shows

concern about not being able to spend quality time in

producing code, but over engineering by saying:

“I think a lot of commercial products out there are

vastly over-engineered. I have learned that the hard

way through Yourdon and drew diagrams for 2 years and

didn't produce any code.”

Another engineer expressed dismay about software

engineers having to do administrative work rather than

actually working towards software development by stating:

“One of the things I don't like with software

companies I have worked for is the amount of

programmers who end up doing admin work that they

don't particularly want to do. And they tend to be

the most senior guys who will deliver the most bang

for buck in terms of coding.”

50

Another interviewed engineer showed concern for

having to write software to be delivered within a schedule

and the burden of having to work with a process on top of

the schedule pressure by saying:

“I'm an engineer. I've got to write this software and

it has to be delivered in 3 weeks time and there is

the pressure of delivering that. And if you add

process in on top of that, unless people get into the

habit of doing it on a day-to-day basis, where you

really instill it as it will take you 10 minutes a

day or 8 hours at the end of the project, and at the

end of the project you won't remember what happened

if you did. But so often, people were filling in time

sheets and lists 6 weeks after the project had

finished in order that the quality process could be

seen to pass its audit.”

Many of these voiced concerns about the burden of

having a process underscore the need for tools to automate

the process. With tools that help automate the process

and allow software developers to develop software, then

software development organizations can have the potential

for success.

The interviewed SMEs reject CMMI-SW and ISO 9001

because of cost requirements and the bureaucratic overhead

51

often associated with the adoption of either of these

processes. Common phrases that are often encountered are:

rigid, baggage, bureaucracy, buried in paper, forced into

filling out forms, bulky, heavy, major drag factor,

overkill, and there is no time for this. The list goes on

with many variations of these phrases. The cost of

administration and bureaucracy are costs that

organizations of any size wish to minimize. Adding more

process is often seen as adding more unnecessary

bureaucracy. It is important to choose a SPI model that

can suit an organization and not be a burden to the health

of the organization.

2.9 Extreme Programming

Beck [1] introduced the practice of Extreme

Programming (XP). In the early days of software process

methods, there were the waterfall and iterative models.

These models both required analysis, design,

implementation, and then finally testing of the developed

software. Long development cycles were very risky since

they could not adapt to sudden changes in the software

requirements. Shorter development cycles were Beck’s

answer to the problem. The waterfall and iterative

52

methods began to address the issue of development cycle

length.

Extreme Programming (XP) takes the conventional

software process that is found in the waterfall and

iterative method, and turns it on the side. Instead of

planning, analyzing, and designing for the distant future,

XP requires programmers to do many small iterations. Each

iteration includes planning, analysis, design, coding, and

testing the new user requirements. In table 5, Beck

introduces the thirteen practices in XP.

Table 5. Practices of Extreme Programming.

Practice Definition

Planning game Customer makes decision about the scope and timing of
releases based on estimates provided by the
programmers. Programmers only focus on functionality
demanded by the story requirements on 3X5 cards for the
particular iteration.

Small releases System is put into production within a few months, before
solving the entire problem. New releases are made
frequently such as daily or monthly.

Metaphor The shape of the system is defined by a metaphor or set of
metaphors shared between the customer and
programmers.

Simple design The design runs all of the tests, communicates everything
the programmer needs to communicate, contains no
duplication in code, and has fewest classes and methods.

53

Tests Programmers write new unit tests before starting to code
new requirements. The tests are collected and all tests
must run correctly. The customer writes functional tests for
the stories in iteration. The customer tests are run at the
end of the iteration.

Refactoring Evolution of the system design through transformation of
the existing design that keeps all the tests running.

Pair programming All production code written by two people together at one
machine/screen/keyboard/mouse.

Continuous integration New code is integrated with the system after no more than
a few hours.

Collective ownership Each programmer improves any code anywhere in the
system at anytime when there is opportunity.

On-site customer Customer who sits with the programming team at all times.

40-hour week Idea of no one working more than 40 hours in one week.
Any overtime is an indicator of deeper problems that need
to be addressed.

Open workspace Team works in large room with small cubicles. Pair
programmers work on computers set up in center of room.

Just rules By being part of Extreme Programming, team members
must sign up to follow the rules.

XP starts by having the customer, or instructor in the

programming course, write stories. Each story is a

software requirement written on a 3X5 inch card. The

programmer estimates the effort required for implementing

each story and then the customer selects a collection of

cards that can be done in the next iteration using the

programmer estimation. This is the planning game. It

defines the scope of the next iteration.

54

The customer thinks about their priorities and

consults the programmer about the effort required. The

programmers then take the selected stories and reduce them

into smaller-grained tasks. The first decision is to be

made about what the project could do and what it should do

first. Beck considers the period before a project first

goes into production as a dangerous time. It needs to be

completed as quickly as possible. The iteration starts

with the programmers writing additional unit tests and

then changing the software so that it passes them and all

previous tests. The changes are integrated into the

system as they pass the tests.

Meanwhile the user develops acceptance tests that are

applied at the end of the iteration. The iteration stops

at the end of a period of time such as a single week. If

any stories are incomplete they are returned to the

planning game. It is always possible that the customer

needs may have changed and made an unimplemented story of

less value than other stories.

The last step in an iteration involves taking the

running code and refactoring it. This improves the

structure in a systematic way with out changing the

behavior of the software. The coding activity is unusual

in that it involves two programmers at one workstation

55

called pair programming. This provides instantaneous peer

review of code.

 It is interesting to point out that there are several

similarities between the PSP and XP. The main focus of

both methods is to strive for high quality code from the

beginning of the project. In the PSP, the programmer

keeps a history of how many defects are in the program

code. Lowering the number of defects per thousands of

lines of code is the first step towards improving code

quality in the PSP. High quality code can be achieved in

XP through the pair-programming practice. Because the

pair-programming practice is in itself a code review as

the story is being implemented in a programming language,

it is a form of check-and-balance that helps keep the

quality of the code high. As one developer is keying in

the code, the other developer is on alert for any

syntactical errors or logical errors.

The pair-programming practice also hopefully ensures

that the developed code will conform to whatever coding

standard that the software development organization has

established. In the PSP, the software engineer has a

coding standard form that is filled out. Another similar

aspect between the PSP and XP is planning and estimation

of the project. Though both are similar with planning and

56

estimation, the scope of the planning and estimation are

different. The PSP does planning and estimation over the

long term, whereas XP is concerned about the short term.

2.10 Summary

The literature review investigated several different

pieces of literature. This literature review looked at

how the PSP has evolved from the first Humphrey PSP [6]

book to the more current [9] book as of this thesis

writing. This literature review also took a quick

overview of the Team Software Process (TSP) to see what

areas there may be in the software process improvement

methods after the PSP. In the literature review, issues

regarding data quality and administrative overhead of the

PSP are two troublesome areas that this thesis will look

into. The literature review provided insight on the

student opinion of the PSP when taught in a software

engineering course. In the literature review, looking at

the opinions by software engineers in the industry about

the PSP were taken into consideration.

57

 CHAPTER THREE:

METHODOLOGY

3.1 Introduction

This chapter covers the methodology used in this

thesis. It explains how the Computer Science faculty

interviews were planned. The methods used for recording

the information are defined and how the information was

interpreted.

3.2 Data Collection

This thesis looks into the thoughts of the Computer

Science faculty and also into literature of software

process improvement from the classroom perspective. The

results from the literature have been summarized in

Chapter Two of this thesis. Every faculty member who was

interviewed had their thoughts or opinions counted. The

main questions in the interviews concentrated on the

interviewed faculty member’s thoughts or opinions with

regards to software engineering. The Computer Science

faculty interview questions were structured in such a way

to make an attempt to unearth new ideas. The

questionnaire began by profiling the interviewed faculty

member by asking about what they are interested in, as

well as what areas they may be actively researching. This

58

is not a question of qualifying or disqualifying the

interviewee, but to put them at ease and to understand

their background.

The Computer Science students were not interviewed.

Students who are taking the CSCI201, CSCI202, and CSCI330

courses are just beginning their journey into the Computer

Science discipline. These students would not have much

knowledge in area of software engineering or in software

process improvement methods. This thesis investigates how

to improve the teaching of software process improvement

methods like the PSP and requires expert, professional

opinion. Student opinions should be sought in the future

research on the effectiveness of these courses. Perhaps

this should be part of the department “Outcomes

Assessment” process.

3.3 Recording the Results

In Chapter Four, this thesis takes a closer look at

the results from the Computer Science faculty interviews.

Pencil and paper note-taking was used during the

interviews along with voice recording when permitted by

the interviewee. The interviews were recorded in order to

gather any information that may have been missed during

the note taking process. After the interviews were

59

completed, each answer was summarized. The common

responses were taken note of, plus any responses that were

different.

3.4 Interpreting the Results

This was not a statistical sample and so very little

calculation was done beyond tabulating frequent responses.

The aim was insight into expert opinions and to generate

ideas. Individual ideas have more value than averages in

this thesis. The results from the Computer Science

faculty interviews were interpreted as the thoughts from

the Computer Science faculty at California State

University, San Bernardino. The results may reflect the

same thoughts or opinions from faculty at other Computer

Science departments. Since the thoughts or opinions from

the reviewed literature very closely mirrored the Computer

Science department faculty thoughts, thus results from the

interviews can be seen as guiding light towards finding an

optimal solution teaching Computer Science students the

concepts of software process improvement methods in the

Computer Science department.

3.5 Schedule

This thesis was scheduled with three key parts to be

done. The first part of the schedule was to review

60

literature that looked into software process improvement

and tools that could assist in training students to be

better software engineers. The second part of the thesis

schedule was to put together interview questions for

interviewing the Computer Science department faculty

members. Once it was finalized with what questions were

going to be asked, the next part of the interview process

was to contact all faculty members with an invitation to

an interview. The third and final part of the schedule

for this thesis was to put together all of the findings

and present the Computer Science department with a

solution to help improve the teaching of software

engineering practices.

3.6 Summary

The collection of information from the literature

review and the Computer Science department faculty

interviews tried to discover ideas for improving the

teaching of software process improvement methods to the

Computer Science students. In Chapter Four, this thesis

will detail the insightful findings of the faculty

interviews, in Chapter Five, this thesis will detail

several solutions, and in Chapter Six, the conclusions and

61

roadmap towards future research in this topic will be made

available.

62

 CHAPTER FOUR:

RESULTS

4.1 Introduction

The Computer Science faculty was interviewed to find

out their views of software process improvement and what

they taught students about this area. The interviews

uncovered several approaches to teaching software

engineering, which will be discussed and compared in this

chapter plus faculty opinions about software process

improvement.

The department has 13 faculty and about 7 are

involved in teaching programming and software engineering.

These thirteen faculty members were invited by e-mail to

take part in the survey. Seven of these faculty members

responded positively to the e-mail and telephone follow-

up. One faculty member asked to be left out because they

were not involved in teaching the CSCI201 and CSCI202

courses. Of these thirteen faculty members, seven were

interviewed thus covering 54% of the target population.

Notice that because the department is small there is no

question of getting a large sample. As a result, the

opinions that were gathered must be taken with a grain of

salt since they probably do not apply to other Computer

63

Science departments. Even so the interviews generated

many interesting and useful insights in the teaching of

software process improvement.

4.2 Computer Science Faculty
Interviews

In the interviews, the faculty members were asked several

key questions about their approaches towards teaching

software engineering. Table 6 contains the questions that

were presented to the interviewees. The Computer Science

faculty interviewees were given these questions in

preparation for the interview so they could have time to

answer the questions in an accurate manner during the

interviews.

Table 6. Interview Questions for Faculty.

Interview Questions

What is your area of research / specialty?

How important is ease of use in software process for students?

Is improving software quality an important aspect for students?

What software process, if any, do you encourage students to use?

What are your thoughts on PSP (Personal Software Process)?

Are there any other software process improvement methods worth investigating?

64

The first question asked the faculty member about their

research area or specialty. This question was an

important question in order to achieve a profile of the

faculty member. The next two key questions looked into

the importance of the ease of use for using software

process improvement from a student stand-point, and

whether or not a student should be focused on just

learning the course material or if they should focus on

improving the quality of software written in the course.

The fourth question that was presented to the interviewee

was looking the software development process that the

faculty member encourages, if there was any process at

all. The final two key questions asked in the interviews

was about the faculty member’s thoughts on the PSP and if

there were any other software process improvement methods

that they may recommend.

4.3 Interviewed Computer
Science Faculty

The faculty is a bouillabaisse of many areas of

research and specialty. The common areas of research and

specialty were in the general areas of technological

tools, software engineering, software process, and

application development. The unique areas of research and

specialty were in areas such as Internet programming,

65

enterprise application development, distributed computing,

Expert Systems, numeric computation and robotics. After

reviewing the similarities and differences between the

interviewed faculty members, there some common ground was

found, and also some different ideas. The interview

results were interesting.

4.4 Software Process for
Students

The first area of the interview investigated the

approaches at introducing software process to the Computer

Science students. When the Computer Science faculty

members who had often taught the CSCI201, CSCI202, and

CSCI330 courses were asked about the importance of the

ease of use for Computer Science students using the

software process improvement practices, most of the

interviewed Computer Science faculty felt that it was

important to have an easy to use software process when

teaching the course materials. One Computer Science

faculty member gave the suggestion of trying different

approaches, which depended on the scope of the

project/assignment. Another Computer Science faculty

member was noted saying that keeping approaches in a

simple manner was important. There should not be any

reason for making the teaching process of a software

66

process improvement method difficult while the student is

learning the course material alongside with the software

process improvement method.

The Computer Science faculty was asked about their

thoughts on the importance of learning how to write

quality computer program code while learning the software

engineering concepts. The Computer Science faculty who

taught the CSCI201 and CSCI202 courses felt that learning

how to write quality computer programs was an important

aspect alongside the course materials. One faculty member

stated that the CSCI201 course was generating good quality

work while learning the materials in CSCI201, the CSCI330

students needed to improve. There may be a link here.

The interviewed faculty were given the opportunity

during the interviews to voice their opinion about what

software process that were encouraged during the

presentation of the CSCI201, CSCI202, and CSCI330 courses.

 There many different processes that were encouraged in

the courses are: iterative methods for software

development, timed boxed approaches, students

participation in requirements gathering for the course

assignments, meeting strict deadlines for the assignments,

the utilization of use case diagrams, class diagrams, test

67

first approaches, and other approaches of having some form

of structure to complete the assignments.

4.5 Faculty Thoughts

Since this thesis investigates the PSP and PSP-like

approaches, the interviewed Computer Science faculty were

asked about their individual opinion about the PSP and any

other software process improvement methods. The main

opinion of the PSP was that it was too bureaucratic. Most

of the interviewed Computer Science faculty felt that

having some method of an integrated statistics tool could

help ease the pain of bureaucracy involved in the PSP.

The Computer Science faculty had some interesting

thoughts on other methods besides the PSP and PSP-like

tools. Several members of the Computer Science faculty

made the suggestion of introducing the Computer Science

students to the principles of Extreme Programming (XP).

The Computer Science faculty members expressed a strong

interest in using Eclipse in the CSCI201, CSCI202, and

CSCI330 courses. There was suggestion of being able to

use the PSP and PSP-like methods alongside of some

Integrated Development Environment (IDE) like Eclipse.

Other Computer Science faculty members felt that using the

Unified Modeling Language (UML), flow charts, and

68

configuration management, should be areas that could be

investigated.

4.6 Student Processes

Several different tools and approaches used by

Computer Science students have been noted while the

students have been completing the necessary coursework for

a Computer Science degree. The commonly used editors for

coding the source code were editors that come with almost

all distributions of the Linux operating system. These

editors were programs such as: vi, emacs, and gedit.

There had been occasions of students using Visual Studio

in the department Windows laboratory. The Computer

Science students use the gnu C/C++ compiler when building

code in C++ and use Sun’s Java SDK that comes installed in

the labs when writing code in Java is required. Eclipse

is now in the process of being introduced to students and

this is good to help familiarize them with the ideas that

come with working in IDEs that can have multiple source

files in projects. However, it has been found that

Eclipse runs slowly on the existing machines and the

department System Administrator is planning on

implementing an upgrade of the laboratory machines to

address this issue.

69

4.7 Summary

The Computer Science faculty interviews were quite

productive in this thesis investigation. Many common

thoughts were expressed as to the importance of teaching

software process improvement methods to Computer Science

students. There were some different points that were

brought up by some Computer Science faculty members that

were also taken into consideration. The process of adding

the Eclipse programming environment to the Computer

Science department is going to be helpful.

70

 CHAPTER FIVE :

ALTERNATE SOLUTIONS

5.1 Introduction

In this chapter of the thesis, several ways to help

improve teaching software process improvement to the

Computer Science students will be discussed. Each will be

taken in turn with the description of the solution, what

is good about the solution, and what is not good about the

solution.

5.2 Solution 0: Do Nothing

This solution is perhaps the simplest solution in

this thesis. In this solution, there are no changes to be

done with the teaching of the software process improvement

methods to the computer Science students. In the CSCI201,

CSCI202, and CSCI330 courses, various approaches of

software process are taught to the Computer Science

students.

On a positive note, the current methods of teaching

software process to the Computer Science students are

good. The Computer Science students are taught several

different methodologies based on the results from the

Computer Science faculty interviews. This can be good

since it can open the student to various different methods

71

for developing software whether it is in an academic

setting or in the Computer Science industry. Since the

courses are already established in the Computer Science

department, there is no preparation overhead of adding or

modifying courses in the Computer Science curriculum.

On a negative note, this is not a good long-term

solution for the Computer Science department. With this

approach, the department runs the risk of becoming

stagnant with old technological ideas and therefore

students will not receive the benefits of a cutting-edge

education. Since the Computer Science discipline and the

industry is ever changing in an ever so rapid manner, it

is important for the academic health of the Computer

Science department to maintain cutting-edge knowledge and

ideas. Keeping to this solution of not doing anything at

all to change the way students are taught software process

methodologies, is a risk that a Computer Science

department cannot take while preparing students for a

competitive career in the Computer Science industry.

5.3 Solution 1: Explore Other
Methods

A solution for the Computer Science department would

be to explore other methods for software process

improvement. Since there are numerous different methods

72

that could be investigated, it can open up the department

to a wider spectrum of ideas. Since Computer Science is

an ever-changing field and new ideas appear on a regular

basis, looking at other methods of software process may be

a good idea.

The exploration of other software process improvement

methods is not a solution that is practical for the

Computer Science department. This exploration of other

methods would cause the existing approaches to be possibly

in limbo since there may not be any certainty that any one

method would become the established method to teach. The

exploration would also cause continual turbulence to the

curriculum. This would cause the academic health of the

department to decline with students either dropping out

due to confusion or graduating without a solid learning of

software engineering practices.

5.4 Solution 2: Integrate
Automation Tools

The PSP is established as the software process

improvement method to introduce to the graduate students

taking CSCI655. Since Disney points out the trouble areas

for data quality issues that arise with manual entry of

the PSP metrics, a solution for the department could be to

integrate tools to automate the PSP into the existing

73

curriculum. These tools would provide a means for the

student to use the PSP to guide the way to producing

higher quality code and understand how to plan and

estimate their work. These automation tools can take in

the form of application programs or shell scripts.

5.5 Why Solution 2 is
Preferred

The solution of using integrated tools for the PSP is

the preferred solution for the Computer Science

department. The solution has no negative impact on the

curriculum. These integrated tools can be introduced to

the curriculum without changing the way the instructor

teaches the courses. Since there would not be any changes

to the existing curriculum, the utilization of integration

tools is an efficient solution for the Computer Science

department.

5.6 Summary

This thesis had to look at what solutions could help

improve the software process of Computer Science students.

This thesis was concerned with finding a solution that

could have the least amount of impact in terms of changing

the curriculum or any other costs that could have a

negative impact.

74

CHAPTER SIX:

CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

This thesis explored the PSP and presented a solution

to help the Computer Science department educate Computer

Science students how to become better software engineers.

Having integrated tools to help gather the metrics used in

the PSP can help introduce the PSP in a more productive

and friendly manner. The most efficient approach is to

add the integrated tools into the existing curriculum

without making any unnecessary changes to the curriculum.

6.2 Future Research and Ideas

 The process of putting the integration tools into

place is an easy process. The tools can be put together

by Computer Science students through both an Independent

Study (CSCI595/CSCI695) or in the form of a Master’s

Project (CSCI698).

Heng-Jui Tsao presented a Master’s Project to the

faculty of the California State University, San Bernardino

Computer Science department with the PSP Scriber [16]. It

75

will be to the advantage of the Computer Science

department to integrate the PSP Scriber and any PSP

integration tools that are incorporated with the

curriculum. The combination of the PSP Scriber and PSP

integration tools will reduce the administrative burden

found with the PSP and reduce data quality errors created

by the students. When the administrative burden on the

student is reduced, the student is then placed in a

learning environment that can foster stronger learning.

Since Eclipse is likely to become an added tool for

Computer Science students, any future work on adding

integration tools should be in the area of building PSP

plug-ins for Eclipse. The Eclipse plug-ins are written in

Java and the Eclipse website [5] contains many useful

tutorials and articles about building plug-ins for the

Eclipse IDE.

 Student survey of how well the PSP integration tools

will need to be conducted. After the investigation of how

well the tools are working, the department can then assess

any other directions that may need to be taken. This can

be done as another Master’s Thesis to help the Computer

Science department in better educating future Computer

Science students.

76

Hopefully, this thesis serves well as a guide for the

Computer Science department in the journey of providing an

excellence for Computer Science.

77

REFERENCES

[1] Kent Beck, “Embracing Change with Extreme
Programming”, IEEE 1999, pgs 70-77

[2] Gerry Coleman, “An Empirical Study of Software
Process in Practice”, IEEE 2005

[3] Martin Dick, Margot Postema, Jan Miller, “Teaching
Tools for Software Engineering Education”, ITiCSE
2000

[4] Anne Disney, Philip Johnson, “Investigating Data
Quality Problems in the PSP,” ACM SIGSOFT 1998,
11/98, pgs 143-153

[5] See http://www.eclipse.org/

[6] Watts S. Humphrey, “A Discipline for Software
Engineering,” Addison-Wesley, 1995

[7] Watts S. Humphrey, “Why Should You Use A PSP,” ACM
SIGSOFT 1995 Vol 20 Num 3, pgs 33-36

[8] Watts S. Humphrey, “Introduction to the Team Software
Process”, Addison-Wesley, 2000

[9] Watts S. Humphrey, “PSP: A Self-Improvement Process
fot Software Engineers”, Addison-Wesley, 2005

[10] See http://www.csse.monash.edu.au/

[11] Rory O’Connor, Gerry Coleman, “Strategies for
Personal Process Improvement: A Comparison”, SAC
2002

[12] Daniel Paulish, Anita Carleton, “Case Studies of
Software Process Improvement Measurement”, IEEE 1994,
pgs 50-57

[13] “Standard for Information Technology – Software life
cycle processes”, IEEE 3/1998, pg 1

[14] “Standard for Information Technology – Software life
cycle processes – Implementation considerations”,
IEEE 4/1998, pg 66

78

[15] George Stepanek, “Software Project Secrets: Why
Software Projects Fail”, Apress 2005, pg 85

[16] Heng-Hui Tsao, “Personal Software Process (PSP)
Scriber”, CSUSB 2002

