

Paul J. Conrad

CS 610, Winter 2004
Dr. Keith Schubert

Unrolling Loops For Scheduling

On a Two Processor Machine

 Unrolling of loops within a computer program is perhaps one of the most important forms of code
optimizations that the program code can benefit from. In this article, we will take a look at a function called daxpy
(double precision of a times x[I] plus y[I]), which is used quite frequently in soling systems of linear equations.
In figure 1, we have a MIPS32 code that is not in the best of forms. This code is equivalent in C/C++ style code
as:

 for (int i=0; i<n; i++) {
 y[i] = a * x[i] + y[i];
 }

 Through out this tutorial, the register $s1 contains the base address for y[], and the register $s2 is the
base address for x[]. We have register $t1 holding the constant value of a, and register $t2 contains the end
address of the array y[].

 L1: LD $r1, 4[$s1] // Load low word of y[i] into $r1 S1
 LD $r2, 0[$s1] // Load high word of y[i] into $r2 S2
 ADD $s1, $s1, #8 // Increment y[] index by 8 bytes S3
 MTHI $r2 // Move high word into HI of [HI:LO] S4
 MTLO $r1 // Move low word into LO of [HI:LO] S5
 LD $r3, 0[$s2] // Load x[i] into $r3 S6
 ADD $s2, $s2, #4 // Increment x[] index by 4 bytes S7
 LD $r4, $t1 // Load constant a into $r4 S8
 MADD $r3, $r4 // Multiply $r3 by $r4 and add to [HI:LO] S9
 MFLO $r1 // Move LO of result to $r1 S10
 MFHI $r2 // Move HI of result to $r2 S11
 ST $r1, -4[$s1] // Save $r1 where we orginially got it S12
 ST $r2, -8[$s1] // Save $r2 where we originally got it S13
 BNE $s1, $t2, L1 // Branch if Not Equal To last index of y[] S14

Figure 1. daxpy code example

 The example code, assuming that each instruction takes one cycle to execute, takes 14 cycles or 7
cycles per word, for each iteration of the loop. At first glance this code looks rather tight knit and optimized to run
well. It is not, because we have a WAR (Write After Read) dependencies between Statement 2 and Statement
3, Statement 6 and Statement 7, and Statement 8 and Statement 9. If we were to run this code as-is on a two
processor machine, it would look like:

 Pipeline #1 Pipeline #2 Cycle #

 L1: LD $r1, 4[$s1] LD $r2, 0[$s1] 1
 ADD $s1, $s1, #8 stall 2
 MTHI $r2 MTLO $r1 3
 LD $r3, 0[$s2] ADD $s2, $s2, #4 4
 stall LD $r4, $t1 5
 MADD $r3, $r4 stall 6
 MFLO $r1 MFHI $r2 7
 ST $r1, -4[$s1] ST $r2, -8[$s1] 8
 BNE $s1, $t2, L1 9

Table 1. daxpy code on two processor pipeline

 In table 1, the code now takes 9 cycles or 4.5 cycles per word for each iteration of the loop. This is a
speedup of 35.7%, even though we have three points in the code that we stall out at. We can resolve these stalls
and make the code better by unrolling the loop and reordering some of the instructions. In order to unroll the
loop, we have to (1) make a copy of the loop body, (2) rename the registers in the new copy so we do not have a
conflict with the original loop body registers (we do not want to add anymore dependencies or headaches). Our
new loop unrolled with just one copy and RAW dependencies removed by instruction reordering looks like:

 L1: LD $r1, 4[$s1] // Load low word of y[i] into $r1 S1
 LD $r2, 0[$s1] // Load high word of y[i] into $r2 S2
 LD $r5, 12[$s1] // Load low word of y[i+1] into $r5 S3
 LD $r6, 8[$s1] // Load high word of y[i+1] into $r6 S4
 MTHI $r2 // Move y[i] high word into HI of [HI:LO] S5
 MTLO $r1 // Move y[i] low word into LO of [HI:LO] S6
 LD $r3, 0[$s2] // Load x[i] into $r3 S7
 LD $r4, $t1 // Load constant a into $r4 S8
 LD $r7, 4[$s2] // Get x[i+1] and place into $r7 S9
 MADD $r3, $r4 // Multiply $r3 by $r4 and add to [HI:LO] S10
 MFLO $r1 // Move LO of result to $r1 S11
 MFHI $r2 // Move HI of result to $r2 S12
 MTHI $r6 // Move y[i+1] high word into HI of [HI:LO] S13
 MTLO $r5 // Move y[i+1]low word into LO of [HI:LO] S14
 ADD $s1, $s1, #16 // Increment y[] index by 16 bytes S15
 MADD $r7, $r4 // Multiply $r7 by $r4 and add to [HI:LO] S16
 ADD $s2, $s2, #8 // Increment x[] index by 8 bytes S17

MFLO $r5 // Move LO of result to $r5 S18
 MFHI $r6 // Move HI of result to $r6 S19
 ST $r1, -12[$s1] // Save $r1 where we orginially got it S20
 ST $r2, -16[$s1] // Save $r2 where we originally got it S21
 ST $r5, -4[$s1] // Save $r5 where we orginially got it S22
 ST $r6, -8[$s1] // Save $r6 where we originally got it S23
 BNE $s1, $t2, L1 // Branch if Not Equal To last index of y[] S24

Figure 2 daxpy code example loop unrolled once

 In figure 2, the loop body now has two iterations of the loop (the original, plus an extra loop unrolled in it).
The registers that have been renamed in the new copy of the unrolled loop are $r5, $r6, and $r7. The index
registers are doubled in their increments (would be tripled if we add another loop iteration to the loop body). The
code now has no data dependencies and can run in 24 cycles on a single processor with 6 cycles per word. In
table 2, we have the code pipelined on a two processor pipeline and the results are excellent since we no longer
have any stalls to be concerned with.

 Pipeline #1 Pipeline #2 Cycle #

 L1: LD $r1, 4[$s1] LD $r2, 0[$s1] 1
 LD $r5, 12[$s1] LD $r6, 8[$s1] 2
 MTHI $r2 MTLO $r1 3
 LD $r3, 0[$s2] LD $r4, $t1 4
 LD $r7, 4[$s2] MADD $r3, $r4 5
 MFLO $r1 MFHI $r2 6
 MTHI $r6 MTLO $r5 7
 ADD $s1, $s1, #16 MADD $r7, $r4 8
 ADD $s2, $s2, #8 MFLO $r5 9
 MFHI $r6 ST $r1, -12[$s1] 10
 ST $r2, -16[$s1] ST $r5, -4[$s1] 11
 ST $r6, -8[$s1] BNE $s1, $t2, L1 12

Table 2. unrolled daxpy code on two processor pipeline

 The code in table 2, does not contain any stalls anywheres since there was careful consideration of
reordering instructions that caused stalls in figure 1 and table 1. The programmer and/or the optimizing complier
must ensure that the alogrithm and program-correctness is not jeopardized by instruction re-ordering. The
instructions that were re-ordered were the loop index variables since they could be incremented wherever we felt
like incrementing them. The store instructions can write back to the original locations via effective address
calculations. The code, as shown in table 2, executes each iteration of the loop in 12 cycles or 3 cycles per word.
According to Amdahl’s Law, this is a 57.1% speedup of the code.

	Paul J. Conrad
	Figure 1. daxpy code example
	Table 1. daxpy code on two processor pipeline
	Figure 2 daxpy code example loop unrolled once
	Table 2. unrolled daxpy code on two processor pipeline

